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Abstract. Using an atom interferometer, we have measured the static electric polarizability of 7Li
α = (24.33 ± 0.16) × 10−30 m3 = 164.2 ± 1.1 atomic units with a 0.66% uncertainty. Our experiment,
which is similar to an experiment done on sodium in 1995 by Pritchard and co-workers, consists in applying
an electric field on one of the two interfering beams and measuring the resulting phase-shift. With respect
to Pritchard’s experiment, we have made several improvements which are described in detail in this paper:
the capacitor design is such that the electric field can be calculated analytically; the phase sensitivity of
our interferometer is substantially better, near 16 mrad/

√
Hz; finally our interferometer is species selective

so that impurities present in our atomic beam (other alkali atoms or lithium dimers) do not perturb our
measurement. The extreme sensitivity of atom interferometry is well illustrated by our experiment: our
measurement amounts to measuring a slight increase ∆v of the atom velocity v when it enters the electric
field region and our present sensitivity is sufficient to detect a variation ∆v/v ≈ 6 × 10−13.

PACS. 32.10.Dk Electric and magnetic moments, polarizability – 03.75.Dg Atom and neutron interfer-
ometry – 32.60.+i Zeeman and Stark effects – 39.20.+q Atom interferometry techniques

1 Introduction

The measurement of the electric polarizability α of an
atom is a difficult experiment: this quantity cannot be
measured by spectroscopy, which can access only to polar-
izability differences, and one should rely either on macro-
scopic quantity measurements such as the electric permit-
tivity (or the index of refraction) or on electric deflection
of an atomic beam. For a review on polarizability mea-
surements, we refer the reader to the book by Kresin and
Bonin [1]. For alkali atoms, all the accurate experiments
were based on the deflection of an atomic beam by an
inhomogeneous electric field and, in the case of lithium,
the most accurate previous measurement was done in 1974
by Bederson and co-workers [2], with the following result
α = (24.3±0.5)×10−30 m3. However, in 2003, Amini and
Gould, using an atomic fountain [3], have measured the
polarizability of cesium atom with a 0.14% relative uncer-
tainty, which is presently the smallest uncertainty on the
electric polarizability of an alkali atom.

Atom interferometry, which can measure any weak
modification of the atom propagation, is perfectly adapted
to measure the electric polarizability of an atom: this was
demonstrated in 1995 by Pritchard and co-workers [4] with
an experiment on sodium atom and they obtained a very
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high accuracy, with a statistical and systematic uncertain-
ties both equal to 0.25%. This experiment was and remains
difficult because an electric field must be applied on only
one of the two interfering beams: one must use a capaci-
tor with a thin electrode, a septum, which can be inserted
between the two atomic beams.

Using our lithium atom interferometer [5,6], we
have made an experiment very similar to the one of
Pritchard [4] and we have measured the electric polar-
izability of lithium with a 0.66% uncertainty, limited by
the uncertainty on the mean atom velocity and not by the
atom interferometric measurement itself [8]. In the present
paper, we are going to describe in detail our experiment
with emphasis on the improvements with respect to the
experiments of Pritchard’s group [4,9]: we have designed
a capacitor with an analytically calculable electric field;
we have obtained a considerably larger phase sensitivity,
thanks to a large atomic flux and an excellent fringe visi-
bility; finally our interferometer, which uses laser diffrac-
tion, is species selective: the contribution of any impurity
(heavier alkali atoms, lithium dimers) to the signal can be
neglected.

We may recall that several experiments using atom
interferometers have exhibited a sensitivity to an applied
electric field [10–12] but these experiments were not aimed
at an accurate measurement of the electric polarizability.
Two other atom interferometry experiments [13,14] using
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Fig. 1. Schematic drawing of our experiment based on a Mach-
Zehnder atom interferometer: a collimated atomic beam, com-
ing from the left, is diffracted by three laser standing waves
made by reflecting three laser beams on the mirrors M1, M2

and M3. The output beam labeled 1 is selected by a slit and
detected by a hot-wire detector D. The capacitor with a sep-
tum between the two interfering beams is placed just before the
second laser standing wave. The x, y and z-axis are defined.

an inelastic diffraction process, so that the two interfering
beams are not in the same internal state, have measured
the difference of polarizability between these two inter-
nal states. Finally, two experiments [15–17] have measured
the Aharonov-Casher phase [18]: this phase, which results
from the application of an electric field on an atom with an
oriented magnetic moment, is proportional to the electric
field.

This paper is organized as follows. We briefly recall the
principle of the experiment in Section 2. We then describe
our electric capacitor in Section 3 and the experiment in
Section 4. The analysis of the experimental data is done
in Section 5 and we discuss the polarizability result in
Section 6. A conclusion and two appendices complete the
paper.

2 Principle of the measurement

If we apply an electric field E on an atom, the energy of
its ground state decreases by the polarizability term:

U = −2πε0αE2. (1)

When an atom enters a region with a non vanishing
electric field, its kinetic energy increases by −U and
its wave vector k becomes k + ∆k, with ∆k given by
∆k = 2πε0αE2m/(�k). The resulting phase shift φ of the
atomic wave is given by:

φ =
2πε0α

�v

∫
E2(z)dz (2)

where we have introduced the atom velocity v = �k/m and
taken into account the spatial dependence of the electric
field along the atomic path following the z-axis. This phase
shift is inversely proportional to the atom velocity and this
dependence will be included in our analysis of the results.

The principle of the experiment, illustrated in Figure 1,
is to measure this phase shift by applying an electric field
on one of the two interfering beams in an atom interferom-
eter [4]. This is possible only if the two beams are spatially
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Fig. 2. Two schematic drawings of the capacitor: top view
of the capacitor cut in the atomic beam plane (upper panel)
and end view as seen by an observer located on the atomic
beam (lower panel). The axis being the same as in Figure 1,
the septum and the electrodes are parallel to the y, z plane,
with the septum at x = 0 and the electrodes at x = ±h. The
high voltage electrodes at the V = V0 potential extends from
z = −a to z = +a, while the guard electrodes extend outside
with |z| > a. The septum and the guard electrodes are at the
V = 0 potential.

separated so that a septum can be inserted between the
two beams. This requirement could be suppressed by us-
ing an electric field with a gradient as in reference [9] but
it seems difficult to use this arrangement for a high accu-
racy measurement, because an accurate knowledge of the
values of the field and of its gradient at the location of the
atomic beams would be needed.

3 The electric capacitor

3.1 Capacitor design

To make an accurate measurement, we must know pre-
cisely the electric field along the atomic path and guard
electrodes are needed so that the length of the capacitor is
well defined, as discussed by Pritchard and co-workers [4].
It would probably be better to have guard electrodes on
both electrodes, but it seems very difficult to draw guard
electrodes on the septum and to put them in place very
accurately. Therefore, as in reference [4], we have guard
electrodes only on the massive electrodes. However, we
have chosen to put our guard electrodes in the plane of
the high voltage electrode. With this choice, the calcula-
tion of the electric field can be done analytically. Figure 2
presents two schematic drawings of the capacitor and de-
fines our notations, while an artist’s view is presented in
Figure 3. Like in reference [4], our capacitor is as sym-
metric as possible with respect to the septum plane, but,
for a given experiment, only one half of the capacitor is
used, the other part creating no electric field with V = 0
everywhere.
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Fig. 3. Artist’s view of the capacitor: we have also shown
schematically some wires connecting the electrodes, the impor-
tant point being that these wires are not close to the atomic
beams.

3.2 Calculation of the capacitor electric field

3.2.1 From three dimensions to two dimensions

If a dielectric slab with a permittivity εr > 1 is intro-
duced in a plane capacitor, the field lines are distorted
and concentrated towards the slab. Because our capacitor
contains dielectric spacers, one could fear a similar effect
but this effect does not exist when the dielectric slab fills
completely the gap between the electrodes. Following Fig-
ure 2, the spacers, with a dielectric constant εr, completely
fill the space |y| > y0, with vacuum in the rest of capaci-
tor, |y| < y0. Let V (respectively V1) be the potential with
|y| < y0 (|y| > y0). In the |y| = y0 planes, the continuity
equations give:

V = V1 and
∂V

∂y
=
∂V1

∂y
(3)

As shown below, a 2D solution of the Laplace equation
of the form V (x, z) exists for the capacitor. Then clearly,
if we take V1 = V , this solution fulfills both continuity
equations on the dielectric borders in the |y| = y0 planes
and we know that the solution is unique.

3.2.2 Calculation of the potential and of the electric field

We consider only one half (with x ≥ 0) of the capacitor
represented in Figure 2. We know the potential on the
borders of the capacitor, with V (x = 0, z) = 0 and V (x =
h, z) = V0 if |z| < a and V (x = h, z) = 0 if |z| > a. To
get the potential everywhere, we start by calculating the
Fourier transform Ṽ (k) of V (x = h, z):

Ṽ (k) =
1√
2π

∫ +∞

−∞
V (x = h, z) exp (−ikz)dz. (4)

Then, for a separable harmonic function of x and z, with
a z-dependence of the exp (ikz) form, its x-dependence
is necessarily given by a linear combination of the two

functions exp (±kx). Using this result and the conditions
on the borders at x = 0 and at x = h, we get the value of
V (x, z) everywhere:

V (x, z) =
1√
2π

∫ +∞

−∞
Ṽ (k)

sinh (kx)
sinh (kh)

exp (ikz)dk (5)

from which we can deduce the electric field everywhere. On
the septum surface x = 0, the electric field is parallel to
the x-axis and we can calculate exactly the integral of E2

on this surface (see Appendix A). We need the capacitor
effective length Leff which is defined by:

Leff =
1
E2

0

∫ +∞

−∞
E2dz (6)

where E0 = V0/h is the electric field of an infinite plane
capacitor with the same electrode spacing h. Using equa-
tion (28), we get the exact value of Leff :

Leff = 2a
[
coth

(πa
h

)
− h

πa

]
≈ 2a− 2h

π
(7)

where exponentially small corrections of the order of
exp [−2πa/h] have been neglected in the approximate re-
sult.

However, the atoms do not sample the electric field on
the septum surface but at a small distance, of the order of
50 µm in our experiment, and what we need is the integral
of E2 along their mean trajectory. This mean trajectory
is not exactly parallel to the septum, but it is easier to
calculate the integral along a constant x line. We may use
either the potential given by equation (5) or Maxwell’s
equations to relate the field components near the septum
surface to its value on the surface. The calculation, given
in Appendix A, proves that the first correction to the ef-
fective length is proportional to x2:

Leff ≈ 2a− 2h
π

+
2πx2

3h
. (8)

The x2 correction is a fraction of the main term 2a equal
to πx2/(3ah) and with our dimensions (x ≈ 50 µm, h ≈
2 mm and a ≈ 25 mm), this correction is close to 5 ×
10−5Leff . This correction is negligible at the present level
of accuracy and we will use the value of Leff given by the
approximate form of equation (7). More precisely, we will
write: ∫ +∞

−∞
E2dz = V 2

0

[
2a
h2

− 2
πh

]
. (9)

3.3 Construction of the capacitor

Let us describe how we build this capacitor. The external
electrodes are made of glass plates (80 mm long in the
z-direction, 35 mm high in the y-direction, 10 mm thick
in the x-direction) covered by an evaporated aluminium
layer. To separate the guard electrodes from the high volt-
age electrode, a gap is made in the aluminium layer by
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laser evaporation [19]. We found that 100 µm wide gaps
give a sufficient insulation under vacuum to operate the
capacitor up to V0 = 500 V. These gaps are separated by
a distance 2a = 50 mm, so that the two guard electrodes
are 15 mm long. The glass spacers are ∼2 mm thick plates
of float glass (10 mm× 80 mm) used without further pol-
ishing. The distance y0 from the spacer inner edge to the
atomic beam axis is equal to ∼7 mm.

We have found that a float glass plate is flat within
±2 µm over the needed surface. This accuracy appeared
to be sufficient for a first construction, as the main geo-
metrical defects are due to the way we assemble the var-
ious parts by gluing them together and by an imperfect
stretching of the septum. We use a double-faced tape AR-
CLAD 7418 (from Adhesive Research) to assemble the
spacers on the external electrodes.

The septum is made of 6 µm thick mylar from Good-
fellow covered with aluminium on both faces. In a first
step, the mylar sheet is glued on a circular metal support.
It is then covered by a thin layer of dish soap diluted in
water and the mylar is heated near 80 ◦C with a hot air
gun. Then, we clean the mylar surface with water and let
it dry. After this operation, the mylar is well stretched and
its surface is very flat. We have measured the resonance
frequencies of the drum thus formed, from which we de-
duced a surface tension of the order of 50 N/m (this value
is only indicative as this experiment was made with an-
other mylar film which was 20 µm thick). Once stretched,
the mylar film is glued on one electrode-spacer assembly
with an epoxy glue EPOTEK 301 (from Epoxy Technol-
ogy), chosen for its very low viscosity, and then it is cut
with a scalpel. In a final step, a second electrode-spacer
assembly is glued on the other face of the mylar. Finally, as
shown in Figure 3, wires are connected to the various elec-
trodes using an electrically conductive adhesive EPOTEK
EE129-4 (also from Epoxy Technology).

3.4 Residual defects of the capacitor

We are going to discuss the various points by which the
real capacitor differs from our model.

3.4.1 2D character of the potential

We have shown that the potential V is reduced to a 2D
function when an homogeneous dielectric slab fills com-
pletely the gap between the electrodes, with the border
between the vacuum and the slab being a plane perpen-
dicular to the electrodes. The real dielectric slab is the su-
perposition of a tape, a glass spacer and a glue film, each
material having a different permittivity εr. The differences
in permittivity perturb the potential which should take a
3D character extending on a distance comparable to the
tape or glue film thicknesses. This perturbation seems neg-
ligible, because the tape and the glue films are very thin
and also because these three dielectric materials have not
very large εr values.

3.4.2 Do we know the potential everywhere on the border?

Our calculation assumes that the potential is known every-
where on the border. But, on the high-voltage electrode,
we may fear that the potential is not well defined in the
100 µm wide dielectric gaps separating the high voltage
and guard electrodes as these gaps might get charged in
an uncontrolled way. This is not likely if the volume re-
sistivity ρ of the Pyrex glass used is not too large: more
precisely, the time constant for the charge equilibration on
the gap surface is given by ε0ρ (within numerical factors
of the order of one) and this time constant remains below
1 second if ρ ≤ 1011 Ω m. We have found several values
of the resistivity of Pyrex glass at ordinary temperature,
in the range (4–8) × 108 Ω m and with such a conductiv-
ity, this time constant is below 10−2 s. Our calculation
neglects the surface conductivity, due to the adsorbed im-
purities, which should further reduce this time constant.

Therefore, we think that it is an excellent approxi-
mation to assume that the potential V makes a smooth
transition from V = 0 to V = V0 in the gaps. Then,
using equation (26), it is clear that the detailed shape
of the transition has no consequence as these details are
smoothed out by the convolution of V (z) by the function
g(z) which has a full width at half maximum equal to
1.12h. We can use equation (7) to calculate the effective
length, provided that we add to the length of the high
voltage electrode the mean width of the two gaps. In the
present work, we have taken one gap width, 100 µm, as
a conservative error bar on the effective length. A supe-
riority of our capacitor design is that these gaps are very
narrow, thus minimizing the corresponding uncertainty on
the capacitor effective length and we hope to be able to
further reduce this uncertainty.

3.4.3 Parallelism of the electrodes

The thickness h of the capacitor, which is the sum of the
thickness of the spacers, the tape and the glue film, is
not perfectly constant. Using a Mitutoyo Litematic ma-
chine, we have measured, with a ±1 µm uncertainty, the
capacitor thickness as a function of z, in the center line
of the two spacers, at y = ±12 mm. The average of
these two measurements gives the thickness h(z) in the
y = 0 plane around which the atom sample the elec-
tric field. The thickness h is not perfectly constant but
it is well represented by a linear function of z, given by
h(z) = h0 + h1(z/a), the maximum deviation h1 being
considerably smaller than the mean h value noted h0. As
these deviations are very small (see below), it seems rea-
sonable to use equation (9) provided that terms involving
powers of h are replaced by their correct averages. The
first term in h−2 corresponds to the integral of E2 over
the capacitor length, from z = −a to z = a and we must
take the average value of h−2 over this region. Neglecting
higher order terms, this average is given by:

〈
1
h2

〉
=

1
h2

0

[
1 +

h2
1

h2
0

]
. (10)
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In equation (9), the second term in h−1, corresponds to
end effects and this quantity must be replaced by the fol-
lowing two-point average:

〈
1
h

〉
=

1
2

(
1

h(z = −a) +
1

h(z = a)

)
=

1
h0

[
1 +

h2
1

h2
0

]
.

(11)
Both corrections involve the same factor [1 + (h2

1/h
2
0)].

3.4.4 Summary of the capacitor dimensions

Although the capacitor is as symmetric as possible, this
symmetry is only approximate and we give the parameters
for the half we have used for the set of measurements
described below. The length of the high voltage electrode,
including one gap width is 2a = 50.00 ± 0.10 mm, the
error bar being taken equal to one gap width, as discussed
above. The distance h between the electrodes gap width
is described by h0 = 2.056 ± 0.003 mm and h1 = 3.2 ×
10−3 mm. The correction term h2

1/h
2
0 = 2.4 × 10−6 is

completely negligible.

4 The experiment

In this part, we are going to recall the main features of our
lithium atom interferometer, to give the values of various
parameters used for the present study, to present the data
acquisition procedure and the way we extract the phases
from the data.

4.1 Our interferometer

Our atom interferometer is a Mach-Zehnder interferome-
ter using Bragg diffraction on laser standing waves. Its de-
sign is inspired by the sodium interferometer of Pritchard
and co-workers [20,21] and by the metastable neon inter-
ferometer of Siu Au Lee and co-workers [22]. A complete
description has been published [5,6].

The lithium atomic beam is a supersonic beam seeded
in argon and, for the present experiment, we have worked
with a low argon pressure in the oven p0 = 167 mbar,
because the detected lithium signal increases when the
argon pressure decreases. The oven body temperature is
equal to 973 K, fixing the vapor pressure of lithium at
pLi = 0.8 mbar and the nozzle temperature is equal to
T0 = 1073 K. With these source conditions, following our
detailed analysis [7], the argon and lithium velocity distri-
butions are described by a parallel speed ratio for argon
equal to S‖,Ar = 8.3 and a parallel speed ratio for lithium
equal to S‖,Li = 6.2 (the parallel speed ratio is defined by
equation (15) below).

We use Bragg diffraction on laser standing waves at
λ = 671 nm: the laser is detuned by about 3 GHz on the
blue side of the 2S1/2 – 2P3/2 transition of the 7Li isotope,
the signal is almost purely due to this isotope, which has a
natural abundance equal to 92.41%, and not to the other
isotope 6Li. Moreover, any other species present in the

beam, for instance heavier alkali atoms or lithium dimers,
is not diffracted and does not contribute to the signal.

The case of lithium dimers deserves a special discus-
sion because they are surely present in the beam and the
lithium dimer has an absorption band system due its A–X
transition with many lines around 671 nm: for most rovi-
brational levels of the X state, the absorption transition
which is closest to the laser frequency has a very large de-
tuning of the order of hundreds to thousands of GHz and
the intensity of this resonance transition is also weaker
than the resonance transition of lithium atom, because of
the Franck-Condon factor. Therefore, the lithium dimers
have a negligible probability of diffraction and do not
contribute to the interferometer signals.

The interference signals in a Mach-Zehnder interfer-
ometer are given by:

I = I0 [1 + V cosψ] (12)

where the phase ψ of the interference fringes can be writ-
ten:

ψ = p(2kL)(x1 + x3 − 2x2) + φ. (13)

The first term of ψ is particular to three-grating inter-
ferometers: the diffracted beam of order p by grating i
has a phase dependent on the grating position xi. In our
case of laser diffraction, the grating position xi is given by
the mirror position Mi and 2kL is the grating wavevector,
where kL is the laser wavevector. This phase term is very
interesting because it is non dispersive and it is commonly
used to observe interference fringes. In our case, we scan
the position x3 of mirror M3 by a piezoelectric translation
stage. The second term φ represents any phase difference
between the two beams and in particular, it will represent
the phase shift due to the application of an electric field
on one of the two paths.

4.2 Introduction of the capacitor

In the present work, we have only used the diffraction or-
der p = 1 so that the center of the two beams are separated
by about 90 µm at the location of the capacitor, which is
located just before the second laser standing wave. The ca-
pacitor is attached to the top of the vacuum chamber and
not to the rail supporting the laser standing wave mirrors
Mi: in this way, we do not increase the vibrations of the
mirror positions xi. The capacitor is held by a translation
stage along the x-direction, which can be adjusted manu-
ally thanks to a vacuum feed through and a double stage
kinematic mount built in our laboratory. The first stage,
operated with screws, can be used only when the exper-
iment is at atmospheric pressure while the second stage,
actuated by low-voltage piezo-translators, can be adjusted
under vacuum. When the septum is inserted between the
two atomic paths, the atom propagation is almost not af-
fected by its presence and, as shown in Figure 4, we have
observed a fringe visibility equal V = 84 ± 1 % and a
negligible reduction of the atomic flux.

To optimize the phase sensitivity (see a discussion in
Ref. [6]), we have opened the collimation slit S1 and the
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Fig. 4. Interference signal observed by displacing the mirror
M3: the signal is expressed in counts per second, but the count-
ing time is equal to 0.1 second only and the background signal
has been recorded at the end of the experiment. The full curve
is the best fit and the fit residuals are plotted, at the bottom
of the figure.
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Fig. 5. Experimental signals corresponding to V0 = 0 (black
dots) and to V0 ≈ 260 volts (grey dots). Their sinusoidal fits
using equation (14) are represented by the full curves. The
phase shift due to the polarizability effect is close to 3π and
the fringe visibility is reduced because of the dispersion of the
phase shift associated to the velocity spread of the lithium
atoms.

detection slit SD (see Ref. [6]) with widths e1 = 18 µm
and eD = 50 µm, thus increasing the mean flux up to
105 counts/s and slightly reducing the fringe visibility
down to V0 = 62% (see Fig. 5).

4.3 The data acquisition procedure

We have made a series of recordings, labeled by an in-
dex i from 1 to 44, with V0 = 0 when i is odd, and with
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Fig. 6. Relative fringe visibility V/V0 with V0 = 62% as a func-
tion of the applied voltage V0. The points are our measurements
and the full curve is our best fit using equations (15, 16).

V0 �= 0, when i is even with V0 ≈ 10 × i volts. For each
recording, we apply the same linear ramp on the piezo-
drive of mirror M3 in order to observe interference fringes
and 471 data points are recorded with a counting time
per channel equal to 0.36 s. Figure 5 presents a pair of
consecutive recordings.

The high voltage power supply has stability close to
10−4 and the applied voltage is measured by a HP model
34401A voltmeter with a relative accuracy better than
10−5.

4.4 Extracting phases from the data

For each recording, the data points Ii(n) have been fitted
by a function:

Ii(n) = I0i [1 + Vi cosψi(n)]
with ψi(n) = ai + bin+ cin

2 (14)

where n labels the channel number, ai represents the ini-
tial phase of the pattern, bi an ideal linear ramp and ci
the non-linearity of the piezo-drive. For the V0 = 0 record-
ings, ai, bi and ci have been adjusted as well as the mean
intensity I0i and the visibility Vi. For the V �= 0 record-
ing, we have fitted only ai, I0i and Vi, while fixing bi and
ci to their value bi−1 and ci−1 from the previous V = 0
recording. We think that our best phase measurements
are given by the mean phase ψ̄i obtained by averaging
ψi(n) over the 471 channels. The 1σ error bar of these
mean phases are of the order of 2–3 mrad, increasing with
the applied voltage up to 23 mrad because the visibility
is considerably lower when the applied voltage V0 is large
(see Fig. 6). This rapid decrease of the visibility is due to
the velocity dependence of the phase and to the velocity
distribution of the lithium atoms.

The mean phase values ψ̄i values of the V0 = 0 record-
ings are plotted in Figure 7: they present a drift equal to
7.5 ± 0.2 mrad/minute and some scatter around this reg-
ular drift. The most natural explanation for this drift is
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Fig. 7. The mean phase value ψ̄i, in radian, of the V0 = 0
recordings is plotted as a function of the recording starting
time t in minutes (with an arbitrary origin). The straight line
is the best linear fit, corresponding to a phase drift of 7.5 ±
0.2 mrad/minute. The fit residuals are also plotted and from
t = 15 till t = 100 minutes, the residuals exhibit an oscillating
pattern with a period close to 17 minutes.

a change of the phase ψ resulting from a variation of the
mirror positions xi: ψ changes by 1 radian for a variation
of (x1 + x3 − 2x2) equal to 53 nm. We have verified that
the observed drift has the right order of magnitude to be
due to the differential thermal expansion of the structure
supporting the three mirrors: its temperature was steadily
drifting at 1.17 × 10−3 K/minute during the experiment
and the support of mirror M3 differs from the other sup-
ports, as it includes a piezo translation stage, which is
replaced by aluminium alloy for the mirrors M1 and M2.
Presently, we have no explanation of the phase scatter,
which presents a quasi-periodic structure as a function of
time: its rms value is equal to 33 milliradians and, unfor-
tunately, this scatter gives the dominant contribution to
our phase uncertainty.

The phase shift 〈φ(V0)〉 due to the polarizability effect
(the average 〈 〉 recalls that our experiment makes an av-
erage over the velocity distribution, as discussed below)
is taken equal to 〈φ(V0)〉 = ψ̄i −

(
ψ̄i−1 + ψ̄i+1

)
/2 where

the recording i corresponds to the applied voltage V0: the
average of the mean phase of the two V0 = 0 recordings
done just before and after is our best estimator of the
mean phase of the interference signal in zero field. In Fig-
ure 8, we have plotted the phase shift φ(V0) as a function
of the applied voltage V0. We have chosen for the error
bar on φ(V0) the quadratic sum of the 1σ error bar given
by the fit of ψ̄i and the 33 milliradians rms deviation of
the V0 = 0 phase measurements.

5 Analysis of the signals: the effect
of the lithium velocity distribution

To interpret the experimental data, we must take into ac-
count the velocity distribution of the lithium atoms.
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Fig. 8. The measured phase shift 〈φ(V0)〉 in radian is plotted
as a function of the applied voltage V0: the best fit using equa-
tions (4, 5) is represented by the full curve and the residuals
are plotted in the lower graph with an expanded scale.

5.1 Velocity averaging of the interference signal

We assume that this velocity distribution is given by:

P (v) =
S‖
u
√
π

exp
[
− (

(v − u)S‖/u
)2

]
(15)

where u is the most probable velocity and S‖ is the par-
allel speed ratio. With respect to the usual form of the
velocity distribution for supersonic beams, we have omit-
ted a v3 factor which is traditionally introduced [25] but
when the parallel speed ratio S‖ is large enough, this v3

has little effect and the main consequence of its omission
is a slight modification of the values of u and S‖. Here,
what we consider is the atoms contributing to the inter-
ferometer signal and their velocity distribution may differ
slightly from the velocity of the incident beam, as Bragg
diffraction is velocity selective. The experimental signal
can be written:

I = I0

∫
dvP (v)

[
1 + V0 cos

(
ψ + φm

u

v

)]

= I0 [1 + 〈V〉 cos (ψ + 〈φ〉)] (16)

where φm is the value of the phase φ for the velocity v = u.
If we introduce δ = (v−u)/u and expand (u/v) in powers
of δ up to second order, the integral can be taken exactly,
as discussed in Appendix B. However, the accuracy of this
approximation is not good enough when φm is large and
we have used direct numerical integration to fit our data.

5.2 Numerical fit of the data

Using equations (15) and (16), we have fitted the measured
phase φ and visibility V as a function of the applied voltage
V . The phase measurements received a weight inversely
proportional to the square of their estimated uncertainty
and we have adjusted two parameters, the value of φm/V

2

and the parallel speed ratio S‖. The results of the fits are
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presented in Figures 8 and 6. The agreement is excellent,
in particular for the phase data, and we deduce a very
accurate value of φm/V

2
0 :

φm/V
2
0 = (1.3870± 0.0010)× 10−4 rad/V2 (17)

where the error bar is equal to 1σ. The relative uncertainty
on φm/V

2
0 is very small, 0.072%, which proves the qual-

ity of our phase measurements. We also get an accurate
determination of the parallel speed ratio:

S‖ = 8.00 ± 0.06. (18)

This value of the parallel speed ratio is larger than the
predicted value for our lithium beam, S‖,Li = 6.2 (see
above) and this difference can be explained by the velocity
selective character of Bragg diffraction.

6 The electric polarizability of lithium

The lithium electric polarizability is related to the value
of φm/V

2
0 by:

φm

V 2
0

=
2πε0α
u

[
2a
h2

0

− 2h0

π

] [
1 +

h2
1

h2
0

]
. (19)

All the geometrical parameters a, h0 and h1 describing
the capacitor are known with a good accuracy and we
deduce a still very accurate value of the ratio of the electric
polarizability α divided by the mean atom velocity u:

α/u = (2.283 ± 0.008)× 10−32 m2 s. (20)

6.1 Measurement of the mean atom velocity

We have measured the mean atom velocity u by various
techniques.

We have made measurements by Doppler effect, mea-
sured either on the laser induced fluorescence signals or
on the intensity of the atomic beam which is reduced by
atomic deflection due to photon recoil. In the first case,
the laser was making an angle close to 49◦ with the atomic
beam and it is difficult to measure this angle with suffi-
cient accuracy.

In the second case, we have used a laser beam almost
contra-propagating with the atoms, so that the uncer-
tainty on the cosine of the angle is negligible. The signal
appears as an intensity loss on the atomic beam and, the
loss is not very large because we have used only one laser,
so that the atoms are rapidly pumped in the other hyper-
fine state. The experimental signal is shown in Figure 9.
From a fit of this data, we get a value of the mean velocity
u = 1066.4± 8.0 m/s.

We have also recorded the diffraction probability as a
function of the Bragg angle, by tilting the mirror form-
ing a standing wave. This experiment is similar to the
one described in our paper [6] (see Fig. 3) but it is made
with a lower power density so that only the first order

Fig. 9. Intensity losses recorded as a function of the laser
frequency in MHz. The peak A corresponds to a laser beam
almost contra-propagating with the atoms while the peak B
corresponds to a laser beam perpendicular to the atomic beam.
The lower curve is the transmission peaks of a Fabry-Perot
confocal interferometer used for frequency calibration.

Fig. 10. Plot of the intensity of the atomic beam as a function
of the voltage applied on the piezoelectric actuator inducing
the rotation angle of mirror M2. When the Bragg condition
is fulfilled, the direct beam intensity is reduced by diffraction
in the diffraction orders ±1. The dots represent the measured
intensity and the curves their best fit. In a separate experiment,
we have calibrated the rotation angle as a function of the piezo
voltage, 5.83 ± 0.03 µrad/V.

diffraction appears. The diffraction is detected by measur-
ing the intensity of the zero-order atomic beam, as shown
in Figure 10. Using an independent calibration of the mir-
ror rotation as a function of the applied voltage on the
piezo-actuator, we get a measurement of the Bragg angle
θB = h/(muλL) = 79.62 ± 0.63 µrad corresponding to
u = 1065.0± 8.4 m/s.

These two values are very coherent and we may com-
bine them to give our best estimate of the most probable
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velocity u:
u = (1065.7± 5.8) m/s. (21)

We can compare this measurement with the theoretical
prediction for supersonic expansions. For a pure argon
beam, in the limit of an infinite parallel speed ratio, the-
ory predicts u =

√
5kBT0/m m/s where T0 is the noz-

zle temperature and m the argon atomic mass. With
T0 = 1073 ± 11 K, we get u = 1056.7 ± 5.5 m/s. Three
small corrections must be made. We must correct for the
finite value of the argon parallel speed ratio S‖Ar, esti-
mated to be S‖Ar = 8.3, using the semi-empirical relation
of Beijerinck and Verster [23] and the associated correction
reduces the most probable velocity u by a fraction equal
to 0.75/S2

‖Ar ≈ 1.09% (this correction is calculated in the
limit of a vanishing perpendicular temperature [24]). We
must replace the argon atomic mass by a weighted mean of
the lithium and argon atomic masses and, with 0.86 mbar
of lithium in 167 mbar of argon, this correction increases
the velocity by 0.21%. Finally, we must take into account
the velocity slip effect: the light lithium atoms go slightly
faster than the argon atoms. This difference has been cal-
culated by numerical simulation by Skovorodko [26] and
this quantity is expected to scale like S2

‖Ar, so that the
correction in our case is estimated to be 2.42%. We thus
predict a most probable velocity u = 1073.0 ± 5.6 m/s,
where the uncertainty comes solely from the uncertainty
on the temperature T0. This value is in satisfactory agree-
ment with our measurements.

6.2 The electric polarizability of lithium

Using the measured value of the most probable velocity u,
we get the lithium electric polarizability of 7Li:

α = (24.33 ± 0.16)× 10−30 m3

= 164.2 ± 1.1 atomic units. (22)

The final uncertainty bar is equal to 0.66%, resulting from
the quadratic sum of the 0.54% uncertainty on the most
probable velocity u, the 0.2% uncertainty on the effective
length of the capacitor, the 2 × 0.15% uncertainty due to
the capacitor spacing h0 and the 0.07% uncertainty on
the interferometric measurement. Unexpectedly, the atom
interferometry result has the smallest uncertainty!

Our measurement is a mean of the polarizability of the
two hyperfine sublevels F = 1 and F = 2 of 7Li. These
two levels have not exactly the same polarizability. The
difference ∆α = α(F = 2,MF = 0) − α(F = 1,MF = 0)
has been measured with great accuracy by Mowat [27].
We can express this result as a fraction of the mean po-
larizability, ∆α = −(3.0± 0.1)× 10−6α. This difference is
fully negligible with our present accuracy.

Our result is in excellent agreement with those of
the previous measurements of α which are considered as
being reliable. The 1934 measurement of Scheffers and
Stark [28], which gave α = (12±0.6)×10−30 m3, is gener-
ally considered to be incorrect. The first reliable measure-
ment is due to Bederson and co-workers [29] in 1961, who

obtained α = (20.0±3.0)×10−30 m3, by using the E-H gra-
dient balance method. In 1963, Chamberlain and Zorn [30]
obtained α = (22.0 ± 2.0) × 10−30 m3 by measuring the
deflection of an atomic beam. Finally, in 1974, a second
experiment was done by Bederson and co-workers [2], us-
ing the same E-H gradient balance method improved by
the calibration on the polarizability of helium atom in
the 3S1 metastable state, and they obtained the value
α = (24.3 ± 0.5) × 10−30 m3.

We may also compare our measurement with theoret-
ical results. Many calculations of α have been published
and one can find a very complete review with 35 quota-
tions in Table 17 of the paper of King [31] published in
1997. Here is a very brief discussion of the most important
results:

• the first precise calculation of α was made in 1959 by
Dalgarno and Kingston [32] and gave α = 165 a.u.
This calculation was rapidly followed by several other
works;

• if we forget Hartree-Fock results near 170 a.u., a large
majority of the published values are in the 162–166 a.u.
range;

• in 1994, Kassimi and Thakkar [33] have made a de-
tailed study with two important results. They obtained
a fully converged Hartree-Fock value, α = 169.946
a.u. and this result, far from the experimental values,
proves the importance of electron correlation. They
also made a series of nth-order Möller-Plesset calcula-
tions with n = 2, 3 and 4, from which they extract their
best estimate with an error bar, α = 164.2± 0.1 a.u.;

• in 1996, Yan et al. [34] have made an Hylleraas calcula-
tion, with the final value α = 164.111±0.002 a.u., this
value and its error bar resulting from a convergence
study.

Our result is extremely close to these two very accurate
calculations of α. Two minor effects have not been taken
into account in these calculations, namely relativistic cor-
rection and finite nuclear mass correction, but these two
effects are quite small.

The relativistic correction on the polarizability has
been studied by Lim et al. [35]. They have made different
calculations (Hartree-Fock, second order Möller-Plesset,
coupled cluster CCSD and CCSD(T)) and in all cases,
their relativistic result is lower than the non-relativistic
result with a difference in the 0.05–0.07 a.u. range. We do
not quote here their results: even the Hartree-Fock value
is lower by 0.45 a.u. than the one of reference [33], because
the chosen basis set is too small.

As far as we know, no calculation of α has been made
taking into account the finite nuclear mass. An order of
magnitude of the associated correction should be given
by the hydrogenic approximation: α ∝ [1 + (m/M)]3 and
in this approximation, the polarizability of 7Li should be
larger than its M = ∞ value by 0.04 a.u. but one should
not expect this approximation to predict even the sign of
the correction. A high accuracy calculation of the finite
mass effect is surely feasible, following the Hylleraas cal-
culations of Yan and Drake, who have already evaluated
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the finite mass effect on some energies [36] and oscillator
strengths [37] of lithium atom.

7 Conclusion

We have made a measurement of the electric polarizability
of lithium atom 7Li by atom interferometry and we have
obtained α = (24.33±0.16)×10−30 m3 = 164.19±1.08 a.u.
with a 0.66% uncertainty. Our measurement is in excellent
agreement with the most accurate experimental value ob-
tained by Bederson and coworkers [2] in 1974 and we have
reduced the uncertainty by a factor three. Our result is
also in excellent agreement with the best theoretical esti-
mates of this quantity due to Kassimi and Thakkar [33]
and to Yan et al. [34]. The neglected corrections (relativis-
tic effect, finite nuclear mass effect) should be at least ten
times smaller than our present error bar.

Our measurement is the second measurement of an
electric polarizability by atom interferometry, the previ-
ous experiment being done on sodium atom by Pritchard
and co-workers [4] in 1995 (see also [21] and [9]). This long
delay is explained by the difficulty of running an atom in-
terferometer with spatially separated beams. Using a sim-
ilar experiment, Toennies and co-workers have compared
the polarizabilities of helium atom and helium dimer but
this work is still unpublished [39].

We want now to insist on the improvements we have
done with respect to the other measurement of an electric
polarizability by atom interferometry, due to Pritchard
and co-workers [4]:

• the design of our capacitor permits an analytical cal-
culation of the E2 integral along the atomic path. This
property is important for a better understanding of the
influence of small geometrical defects of the real capac-
itor. In the present experiment, the uncertainty on the
E2 integral is equal to 0.36% and we think that it is
possible to reduce this uncertainty near 0.1% with an
improved construction;

• we have obtained a very good phase sensitivity of our
atom interferometer: from our recordings, we estimate
this phase sensitivity near 16 mrad/

√
Hz. The accu-

racy achieved on phase measurement has been limited
by the lack of reproducibility of the phase between con-
secutive recordings. We will stabilize the temperature
of the rail supporting the three mirrors, hoping thus to
improve the phase stability. Even if we have not been
able to fully use our phase sensitivity, we have obtained
a set of phase-shift measurements exhibiting an excel-
lent consistency and accuracy, as shown by the quality
of the fit of Figure 8 and by the accuracy, ±0.072%, of
the measurement of the quantity φm/V

2
0 ;

• in his thesis [38], Roberts reanalyzes the measurement
of the electric polarizability of sodium atom made by
Ekstrom et al. [4]: he estimates that a weak contribu-
tion of sodium dimers to the interference signals can
be present as material gratings diffract sodium dimers
as well as sodium atoms and he estimates that, in the
worst case, this molecular signal might have introduced

a systematic error as large as 2% on the sodium polar-
izability result. Our interferometer is species selective
thanks to the use of laser diffraction and this type of
error does not exist in our experiment. Only lithium
atoms are diffracted and even, with our choice of laser
wavelength, only the 7Li isotope contributes to the sig-
nal.

The main limitation on the present measurement of the
electric polarizability of lithium 7Li comes from the un-
certainty on the most probable atom velocity u. With
some exceptions, like the Aharonov-Casher phase shift [18]
which is independent of the atom velocity, a phase-shift
induced by a perturbation is inversely proportional to
the atom velocity, at least when a static perturbation is
applied on one interfering beam. This is a fundamental
property of atom interferometry and clever techniques are
needed to overcome this difficulty:

• Roberts et al. [9] have developed a way of correcting
the velocity dependence of the phase shift by adding
another phase shift with an opposite velocity depen-
dence. They were thus able to observe fringes with a
good visibility up to very large phase shift values;

• our present results prove that a very accurate mea-
surement can be made in the presence of an important
velocity dispersion without any compensation of the
associated phase dispersion, but by taking into account
the velocity distribution in the data analysis.

In these two cases, one must know very accurately a veloc-
ity, the most probable velocity in our case and the velocity
for which the correction phase cancels in the case of ref-
erence [9]. The uncertainty on this velocity may finally be
the limiting factor for high precision measurements. Obvi-
ously, other techniques can be used to solve this difficulty.

Finally, we think that our experiment illustrates well
two very important properties of atom interferometry:

• the sensitivity of atom interferometry is a natural con-
sequence of the well-known sensitivity of interferome-
try in general, which is further enhanced in the case
of atom by the extremely small value of the de Broglie
wavelength. Our phase measurement is in fact a direct
measurement of the increase ∆v of the atom velocity
v when entering the electric field. ∆v is very simply
related to the observed phase shift:

∆v

v
=
λdB

Leff

φ

2π
. (23)

This variation is extremely small, with ∆v/v ≈ 4 ×
10−9 for the largest electric field used in this experi-
ment, corresponding to φ ≈ 25 rad. Our ultimate sensi-
tivity corresponds to a phase φ ≈ 3 milliradians which
means that we can detect a variation∆v/v ≈ 6×10−13,
whereas the velocity distribution has a FWHM width
equal to 21%!

• when an atom propagates in the capacitor placed in
our atom interferometer, its wavefunction samples two
regions of space separated by a distance ∼90 µm with
a macroscopic object, the septum, lying in between
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and this situation extends over a 75 microsecond du-
ration, without inducing any loss of coherence. This
consequence of quantum mechanics remains very fas-
cinating!
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their help.

Appendix A: Detailed calculation
of the capacitor electric field

The first step is to calculate the Fourier transform Ṽ (k)
of V (x = h, z) defined by equation (4):

Ṽ (k) =
1√
2π

∫ +a

−a

V0 exp (−ikz)dz

=
2V0√
2π

sin (ka)
k

. (24)

The potential V (x, z) given by equation (5) can then be
calculated and, from V (x, z), we can deduce the electric
field everywhere and in particular, on the septum surface
where it is parallel to the x-axis:

Ex(x = 0, z) =
1√
2π

∫ +∞

−∞
Ṽ (k)g̃(k) exp (ikz)dk (25)

with g̃(k) = k/ sinh (kh). The electric field Ex(x = 0, z) is
given by the inverse Fourier transform of the product of
two functions Ṽ (k) and g̃(k). Therefore, the field Ex(x =
0, z) is the convolution of their inverse Fourier transforms
which are V (x = h, z) and g(z):

Ex(x = 0, z) =
∫ +∞

−∞
V (x = h, z1)g(z − z1)dz1. (26)

Using reference [40] (Eq. (6) of paragraph 4.111, p. 511),
we get an explicit form of g(z):

g(z) =
π2

2h2 cosh2
(

πz
2h

) . (27)

This result proves that the field decreases asymptotically
like exp (−π|z|/h), when |z| − a � h. We can also get a
closed form expression of the electric field Ex(x = 0, z)
but we may get the integral of E2 without this result,
simply by using the Parseval-Plancherel theorem and ref-
erence [40] (Eq. (4) of paragraph 3.986, p. 506):
∫ +∞

−∞
Ex(x = 0, z)2dz =

2aV 2
0

h2

[
coth

(πa
h

)
− h

πa

]
. (28)

The atoms sample the electric field at a small distance of
the septum surface and we need the integral of E2 along
their mean trajectory. This mean trajectory is not parallel

to the septum, but it is easier to calculate this integral
along a constant x line. From Maxwell’s equations, one
gets the first correction terms to the field when x does not
vanish:

Ex(x, z) ≈ Ex(x = 0, z)− x2

2
∂2Ex

∂z2

Ez(x, z) ≈ x
∂Ex

∂z
(29)

where the derivatives are calculated for x = 0. After an
integration by parts, one gets:
∫ +∞

−∞

[
E2

x(x, z) + E2
y(x, z)

]
dz =

∫ +∞

−∞

[
E2

x(x = 0, z) + 2x2

[
∂Ex

∂z

]2
]
dz (30)

where we have kept only the first non vanishing correction
term in x2. The calculation of the integral is also done with
the Parseval-Plancherel theorem and, after some algebra,
we get:

2x2

∫ +∞

−∞

[
∂Ex

∂z

]2

dz = x2 V
2
0

h3

[
2
3
−

πa
h coth

(
πa
h

) − 1

sinh2
(

πa
h

)
]

≈ x2 2V 2
0

3h3
(31)

where the approximate result is obtained by neglecting the
exponentially small terms of the order of exp [−2πh/ (a)].

Appendix B: Velocity average
of the interference signals

We want to calculate:

I = I0

∫
dvP (v)

[
1 + V0 cos

(
ψ + φm

u

v

)]
(32)

with the velocity distribution given by:

P (v) =
S‖
u
√
π

exp
[
− (

(v − u)S‖/u
)2

]
. (33)

Noting δ = (v − u)/u and expanding (u/v) in powers of δ
up to second order, the integral becomes:

I/I0 =
S‖
u
√
π

∫
dδ exp

[
−δ2S2

‖
]

× [
1 + V0 cos

[
ψ + φm

(
1 − δ + δ2

)]]
(34)

which can be taken exactly:

I/I0 = [1 + 〈V〉 cos (ψ + 〈φ〉)] (35)

〈V〉 = V0

S‖[
S4
‖ + φ2

m

]1/4
exp

⎡
⎣− φ2

mS
2
‖

4
(
S4
‖ + φ2

m

)
⎤
⎦ (36)

〈φ〉 = φm +
1
2

arctan

[
φm

S2
‖

]
− φ3

m

4
(
S4
‖ + φ2

m

) . (37)
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Fig. 11. Calculation of the average visibility 〈V〉 in the case
S‖ = 8 as a function of φm. The approximate result (Eq. (36))
is plotted with a dashed line while the result of the numerical
integration is plotted by the full line.

Fig. 12. Calculation of the average phase 〈φ〉 in the case S‖ =
8. The quantity 〈φ〉−φm is plotted as a function of φm: dashed
line for the approximate result (Eq. (37)) and full line for the
result of the numerical integration.

We have tested this approximation by comparing this ap-
proximate formula with the result of a computer program,
for a parallel speed ratio S‖ = 8, corresponding to our ex-
perimental case. As shown in Figure 11, the agreement
is very satisfactory, at least with our present accuracy on
visibility values, with differences of the order of 1%.

We have also studied the difference (〈φ〉 − φm) as a
function of φm and the results are presented in Fig-
ure 12. This difference can reach large values, for instance
−0.64 rad when φm ≈ 25 rad. One may remark that, as

obvious on equation (37), the difference (〈φ〉 − φm) is lin-
ear in φm and positive, when φm is small, and becomes
negative and roughly cubic in φm for larger φm values. If
the parallel speed ratio S‖ is large, S‖ � 1, as long as
the linear term is dominant, the velocity averaged phase
is given by:

〈φ〉 = φm

[
1 +

1
2S2

‖

]
(38)

and not by φm. With S‖ = 8, the approximate and nu-
merical results are almost equal as long as φm < 18, but
their difference increases rapidly for larger φm values, be-
ing close to 0.05 radian when φm = 25: even if this differ-
ence is a very small fraction of φm, this difference is not
fully negligible and we have decided not to use the ap-
proximate analytical results (36) and (37) to fit the data.
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